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An environmental fog simulation (EFS) attachment was developed to aid in the stud) of natural low-visibility

visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A

revie_ of the basic fog equations indicated that the two major factors must be accounted for in the simulation of

low visibility--one due to atmospheric attenuation and one due to veiling luminance. These factors are com-

pared systematically by 1) comparing actual measurements to those computed from the fog equations, and 2)

comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are

also compared with the simulated equivalent equations and with contrast measurements obtained from a current

electronic fog synthesizer to help identify areas in which improvements are needed. These differences in

technique, the measured values, the features of both systems, a pilot opinion survey of the EFS fog, and ira-

pro_ements (b) combining features of both systems) that are expected to significantly increase the potential as

well as flexibilil) for producing a vet) high-fidelit), low-visibility visual simulation are discussed.

Nomenclalure

B_ =ambient sun luminance as observed toward
horizon, cd/m 2

B o = object-scene display luminance, cd/m 2

B o = background-display-scene luminance, cd/m 2

B R =object-scene luminance at pilot's eye position,
cd/m 2

B,_ =background-scene luminance at pilot's eye

position, cd/m _

C R = apparent contrast

CR/C o =contrast transmittance ratio or contrast
modulation

R = horizontal range, m

RVR = runway visual range, m

R _. = horizontal fog visual range, m

t = time, s

Z = aircraft altitude, m

Zv = vertical oscillator signal from computer, V

Z), R =vertical breakout altitude of aircraft relative to
RVR, m

cd =display field of view through windscreen, deg

_, =pilot control input variables to aircraft

equations of motion, rad

0 M = motor drive position of environmental chamber

faceplate, deg

a = extinction coefficient, 1/m

a/ = scattering coefficient, I/m

a 2 = absorption coefficient, I/m

o_z = vertical altitude oscillator frequency, rad/s

Introduction

OOR visibility is a major contributing factor in many
terminal-area landing approach accidents. Recent

National Transportation Safety Board (NTSB) accident
statistics show that 48.3°70 of all air-carrier accidents are

caused by or related to adverse weather conditions. _.2 Ac-

cording to another NTSB 10-year statistical analysis, 4107o of
all fatalities were caused by weather conditions. 3 A summary

of 17 low-visibility accidents showed that 80070 occurred when

visibility was less than 1609 m (5278 ft) because of fog and
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rain, and 60% of these incidents occurred in nighttime

conditions. -' The underlying factor may be the result of faulty

visual perception caused by distorted or reduced visual inputs

occurring under conditions of rain and fog. 4

An early attempt to use the natural effects of actual fog was

made at the University of California at Berkeley (under the

sponsorship of the FAA). Workers there constructed a large

building (circa 1964) in which actual fog was produced and

used in studies of airport lighting systems. __r The presence of

actual fog served to increase the "realism" required for a

balanced lighting system investigation under low-visibility

conditions. Because actual fog was being used, conditions

were present that could not be successfully reproduced by
other methods.

The FAA has recently considered the benefits of upgrading

and promoting the additional use of simulators to expand

training and certification to improve safety, to increase fuel

conservation, and to reduce training costs as well as airport

congestion (according to an FAA-NPRM, 14 CFR parts 61

and 121). A DOT/FAA Final Rule 121-14C, effective August

29, 1980, declares three major phases for upgrading current

simulators to permit and present realistic training in various

abnormal and weather flight conditions that may be en-

countered during line operations. The phase 2 visual-scene

weather presentations required realistic fog representations.

The phase 3 visual-scene presentations additionally include

the sound, visual, and motion effects of entering light,

medium, and heavy precipitation below an altitude of 610 m

(2000 ft). Thus implementation of visibility conditions of

sufficient realism is required to fulfill both phase 2 and 3

training requirements.

What is not clear from the above requirements is how the

low-visibility visual cues are to be improved, or what level of

realism is required, or how the realism level is to be measured.

Furthermore, there is confusion among those working in

flight simulation about the properties of fog that are needed

to accurately create simulation models of fog. As a result, the

following basic discussion is intended to provide a needed

basis from which a low-visibility model can be simulated and

applied in the construction of simulation hardware devices.

Background

Types of Fog and Characteristics

The most common types of fog are 1) radiation, 2) ad-

vection, and 3) frontal. Radiation fog is formed when the

ground surface is colder than the air temperature; it can be
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further classified as "shallow" (single layered) or "mature"
(deep multilayered). Advection fog is formed when a warm,

moist air mass moves over a cold surface. Sea fogs are ac-

tually advection fogs. Frontal fog is formed as a boundary
between a cold and warm air mass. Reference has sometimes

been made to an "upslope" fog, but it is the early stage of a
cloud that is forming as a result of convective adiabatic ex-

pansion.8 Patchy fog could be formed from any one of the
above three types because of local differences between the

surface and air temperature.

It has been recognized for a long time that a wide

divergence of opinion exists pertaining to the measurement

techniques for recording and defining the optical viewing
properties of fog. 9J° To clarify some misrepresented facts

concerning fog, objects illuminated in bright daylight and
observed in clear air and in fog would not have undiffused
edges because the intense daylight veiling luminance is
considered to mask the halo luminance and therefore could

not be observed. Figures 1 and 2 show a sample nighttime

scene taken at the Arcata (Calif.) Airport commencing from a
light fog (Fig. 1) to heavy fog (Fig. 2). These photographs

show 1) the presence of a halo that rapidly diminishes in heavy
fog; and 2) a contraction of the apparent size of the halo light

between light and heavy fog. A brief explanation of these
effects is presented in Fig. 3, which shows how a distant light

would be observed at night in the presence of a light fog to
produce both an attenuation (loss of luminance) and the halo
effect mentioned previously. Rays of light emanating from

the point-source light are partially absorbed and diffracted by

the fog droplets along the path to the observer. With each fog
droplet encounter, the luminance of the light decreases, and at

the same time the light spreads. The spreading of this light
becomes the halo as seen by the observer.

The observed optical characteristics of fog are known to

include the following factors: 1) attenuation of scene
brightness, and 2)the veiling luminance effect from an
ambient light source, such as from the sun or from aircraft

landing lights. The veiling luminance is caused by light rays

that may be multiply refracted and diffracted from one fog
particle onto other particles to produce a scattering of the

light as though it was emanating from all directions. Con-
sequently, any scene to be viewed through the fog would not
be visible until the contrast between the fog and scene im-
proved above a certain contrast value.

=3.41/R v, which represents an average value for the
visibility.)

This extinction coefficient is used to help formulate the

luminance of an object seen in daylight and is composed of
two parts: 1) attenuation; and 2) veiling luminance, as shown
in the following equation _.14:

veiling
attenuation luminance

BR=Bo e ,,R+Bh(l_e ,,R)

BR =Bo e-oR +Bh (1 --e-°R) (3)

Fig. I Effects of fog on run_a._ lights--Arcata (Calif.) Airport.

Equations for Actual Fog

Atmospheric attenuation is a function of many variables:

wavelength, path length, pressure, temperature, humidity,
and the composition of the atmosphere. _ The factor com-
monly used to describe the density of the fog is called the

extinction coefficient. It is known to be composed of two

parts: a scattering component, oj, and an absorption com-
ponent, o2, so that (from Refs. 11-13)

o=ol +02 (1)

The dominant term, a t , is that due to scattering from both the
air molecules (Rayleigh scattering) and scattering by the
aerosol particles (Mie scattering). _ The average extinction
coefficient for the visible spectrum (0.38-0.72 ,am) at sea level

depends as follows on the horizontal visibility range R v:

o=3.41/Rv (2)

(Koschmieder assumed a contrast threshold value of 2%;
that value, which resulted in the present computation of

3.91/Rv=(l/Rv)&(I/O.02), has tended to persist in
meteorological circles, although it has been the subject of

considerable doubt. _,LIn another more recent study, Politch ts

found that the extinction coefficient should be a= 3.41/Rv.
This implies that the average value of the contrast threshold
should be 3.3o2"0 as computed from (l/Rv)g,(I/O.033)

Fig. 2 Effects of increasing fog on runway lighls--Arcata (Calif.)
Airport.

DISTANCE _ 0

6_
LIGHT(___ RAYS _ • BRIGHT

EYE _'_ (:_U (_) "_(__ /lo_ LIGHT
POSITION (_D SOURCE

 ;LO
DISTRIBUTION OF LIGHT

Fig. 3 Light altenuatiun in presence uf fn_.
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Inherent contrast:

C o= (B o-Bo)/B o

Apparent contrast:

(4)

C R- (Bo-Bo) e-°R CoBo e-°R= (5)
BR Bn

Contrast transmittance or contrast modulation:

C.._ER = Boe - oR = 1

C O Boe-°R+B_(I-e -°R ) I +Bh(l-e-°R)/Bo e-°R

(6)

The first term in Eq. (3) pertains to the luminance of the
object and to its attenuation caused by the absorption and
scattering coefficients of fog or cloud conditions. Similarly,

the second part of Eq. (3) is the veiling effect. The main
reason it is so difficult for a daytime observer to distinguish

an object is that the sunlight falls on a cloud or fog and
produces an intense scattering of light. The veiling luminance

of the fog so greatly exceeds the reduced luminance of the
object scene that it makes it difficult if not impossible to see.
The method used to better describe how well an object can be

seen can be determined by examining the contrast trans-

mittance ratio or contrast modulation, CR/C o, shown in Eq.
(6).

Equations for Electronic Fog

An example of a modified raster system now in use at Ames
Research Center operates by switching the proportional fog
and background scene video inputs through a gain-changing

amplifier before it terminates at the displa_ monitor._6
Circuitry to maintain pitch and roll is synchronized to overlay
the fog with the horizon and ground-view scene presented on
the final display scene monitor. Although details of the

following material are beyond the scope of this report, a brief
discussion is justified in order to demonstrate the simplified
fog and contrast equations which are currently represented by
electronic methods and which can be directly compared with

the actual fog equations presented earlier.

The equation of an object and the background seen m

simulated daylight is represented as

Bt¢ = B, + BI, [1 - 0.1(R I/R) ]

B u =B.+B_, [I -O.I(RI/R) ]

(7)

for 0.1R, <_R<R_.
The contrast transmittance or contrast modulation is

C R BO

C o Bo + B/, [ 1-O.I(RI/R)]
(8)

I

I+B h[l-0.1(R I/R)]/B o

Variations of the above method are in use with current

computer-image-generated (CIG) displays that also include
rasler-dri_ en displays. Some CIG displays may use algorithms
to change visibility by modifying each picture element of the

display; however, they may be limited in a real-time

generation of the low-visibility scene.

Perceptual I,imitaliuns of Electronic Fog

Although electronic contrast adjustment could be done

according to the correct contrasl equations, it would still have
limitations. The synthesized veiling luminance caused by the
sun, moon, or landing lights is wrongly placed in the optical

plane of the CRT, which is usually collimated near infinity.

The pilot would Ihen bc less subjccl to the Mandclbaum ef-
fect-the accommodation to a nearby resting distance in the

absence of strong distant cues. _ Also, conlrast adjustment of

the electronic fog does not simulate the halo effects thai are

prominent at night. Furthermore, the fog is two-dimen,sional
and is homogeneous.

Because these differences in the present electronic fog

method presented conflicting low-visibility visual cues
compared with the natural cues of actual fog, it seemed
reasonable to attempt to construct a simulation device lhat

would use actual fog. It was also recognized that this new

device might also have limitations and might require some
elements of the electronic method for precisely producing a

high-fidelity, low-visibility simulation. In order to examine

the low visibility environment in greater detail, an apparatus
from _hich Io,_-visibility measurements are obtaincd for

comparison with the actual fog equations is described, and the
modifications needed for reproducing a high-fidelity, low-

visibility xisual simulalion are discussed.

Environmental-Effects Fog Chamber

Description
Many of the conventional simulators currently in use are

constructed with top-mounted display CRT's viewed through
mirror beam splitters and a spherical reflective mirror

positioned in the simulator windshield. Although the above
optical system could be designed to accept an environmental

or fog and rain attachment, it was convenient, for ex-
perimental purposes, to use a previously successful optical

system, which uses either a color television model-board or
computer-image-generated (CIG) scene monitor located at the
focal plane of the collimating lens (Fig. 4). In this

arrangement, the empty space between the beam splitter and
the windshield seemed an appropriate place to experimentally

position a small environmental fog and rain chamber. The
subject device was conceived and developed--within the Man-

Vehicle Systems Research Division, Ames Research Cen-
ter-for use in conducting research on the low-visibility scene.
The device (U.S. patent 4313726--NAS-ARC-III58-1) is

capable of providing fog, rain, or both fog and rain com-
bined. For the purposes of this report, however, only the
details of the low-visibility, fog-generating system are

presented.
In referring to Fig. 4, the components needed to support

and test the operation of the new environmental attachment
are 1) a main-frame digital computer; 2) a display generator;

3) a color display monitor, such as a beam-penetration-type or
a color television monitor; 4) collimating lens arrangement; 5)
the environmental chamber and fog generators; and 6) an

ambient light source. For the purposes of evaluation, the

small digital computer within the display generator was used
to provide the longitudinal aircraft dynamics and control laws
to the chamber. Interior to the chamber, at the sides, are two

primary environmental effects fog generators (not shown).
Positioned between the top of the environmental chamber and
the face of the display monitor is a fluorescent lamp for

simulating the ambient veiling luminance; the brightness of

the lamp is controlled by the digital computer.
Figure 5 is a photograph of the experimental hardware

developed for installation in the windshield area of the air-
craft simulator cab. An example of what the pilot would see is

shown in Figs. 6 and 7. Figure 6 is a runway view looking
through the chamber (without fog) of a TV model-board
visual scene; Fig. 7 is the same scene observed through a 305-
m (1000-ft) visibility (RVR). Although the above discussion

pertains to only one aircraft windshield window, it should be
emphasized that multiple environmental chambers can be
positioned at each window of the simulator cab, each of
which could operate independently with varying visibilities, if
so desired.
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environmental effects visual
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Fig. 5 Arrangement of experimental component hardware.

Method of Operation

The device that produces the natural low-visibility en-

vironment is discussed in more detail in ARC 11158-1.

However, it is this device that manufactures the fog (which is

composed of minute aerosol droplets). The droplets are

ejected at a low velocity--about 0.3 m/s--into the en-

vironmental chamber. As the number of these fog droplets

within the chamber increases, they become more tightly

packed within the constant volume of the environmental

chamber, changing the attenuation coefficient a.R. Con-

sequently, the maximum density is reached as the attenuation

coefficient approaches 20; at that point, it becomes im-

possible for an observer to see any object through the small

central thickness (0.24 m) of the environmental chamber. A

single 12-W overhead fluorescent lamp produces an effect

that can make the fog appear even more dense, when it is

properly controlled; the lamp is used to simulate the effect of

sunlight falling upon the fog or cloud.

The details of the primary mechanism that can precisely

remove and replace portions of air from the environmental

chamber are also discussed in ARC 11158-1. Briefly,

Fig. 6 Virtual display observed through collimating lens pair and
chamber without fog.

however, assume the chamber is filled with fog and is at the

maximum density (o.R=20). A computer-generated,

variable-altitude oscillator signal w z produces an output

signal which is converted to an analog voltage signal Z v. This

oscillating voltage signal commences to repeatedly energize an

external relay, whereupon dry air at pressure Pand moving at

velocity V is admitted in pulses to the bottom of the en-

vironmental chamber to mix with the fog. As a result, both

the dry air and fog are forced to exit at the top via pressure

relief valves. The frequency of the altitude oscillator, w z,

changes as a function of altitude and RVR in order to produce

digital pulses based on the following equation:

30[Z- (Zv_ - 15.24)]
(9)

Wz = 30.48

where ZvR is a function of RVR. The oscillator output signal

produces voltage pulses Z v through a digital-to-analog

converter; the voltage pulses are frequency dependent:

Z t =5(I -coswzt) (10)
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Fig. 7 Display scene observed through collimating lens pair and

chamber with fog calibrated to 305-m (1000-ft) RVR.

VEILING LUMINANCE
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,,_ ..j oL < _ o[/.i,.1/ ' , , -v; ---- ,
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RVR, f¢

do ,_'_o,_3o22,o 3oso'3_o
RVR, m

Fig, 8 Changes in selling luminance and attenuation with RVR: a)
veiling luminance; b) attenuation.

Thus the shift in frequency is then made to correspond to a

specific number of air pulses re[ative to the RVR condition.

This method of calibration allows clean dry air _o enter the

chamber in proportional air pulses and displaces a compac,

volume of fog wififi:_ the ch,_qber, resulting in calibrated

changes in vis:hi]i',: .

Improsemenls in Fog Simulation Fidelit)

Earlier, in Eq. (3), two factors were sho_n to be present in

a daylight scene: 1) that due to the object and its attenuation

through the fog; and 2) that due to the ambient light upon the

fog, referred to previously as the veiling luminance. In order

to determine the degree of validity for the simulated low-

visibility en',ironment, the individual contributions of at-

tenuation and xeiling luminance were measured at the pilot's

eye position. To examine the pure veiling luminance con-

tribution only, a Pritchard photometer was positioned at the

pilot's eye position to record the luminance values (obtained

by reducing B o to zero in Eq, (3) with the use of a black velvet

cloth equal in area to the CRT monitor scene and positioned

at the collimating lens focal plane) while the visibility was

made to change. The precision injection of calibrated pulsed

air into the chamber causes the fog density to change--

changing the extinction coefficient--and the ensuing visibility

change is then compared with the veiling luminance term in

Eq. (3). The calibrated RVR values recorded by the

photometer for RVR's ranging between 0 and 3660 m (12,000

ft) is shown in Fig. 8a. This measurement compares and

demonstrates both analytically and empirically that as the fog

becomes more dense, the ensuing brightness increases to a

maximum value at zero visibility. Also, it should be noted that
no correction for altitude has been added so this effect is what

would be expected along a horizontal path at sea level and in a

shallow radiation fog along the ground, it This veiling

luminance can also be expected to change somewhat,

depending on other types of fog and by considering the choice

of an altitude-related extinction coefficient correction

(discussed in more detail in Ref. I l).

The other factor is that caused by attenuation. To obtain an

attenuation response through the fog, a 17.15-cd/m z (5-fL)

fiber optic point-source light (2-ram diameter) was positioned

at the collimating lens focal plane and the ambient veiling

lamp was turned off. Again, air was pulsed into the en-

vironmental chamber under computer control to change the

visibility. The photometer was used to record the attenuation

values, which are presented in Fig. 8b. This demonstrates that

a decrease in brightness occurs with a reduction in simulated

RVR. To illustrate characteristic properties of actual fog that

Fig, 9 Sequence of a single point-source light attenuated by in-
creasing fog density: a) no fog; b) very light fog; c) light fog; d)

medium fog; e) heavy fog; f) dense fog.

are present, Fig. 9 shows a sequence of six photographs of a

fiber optic point-source light recorded with increasing fog

density. Of particular interest are the similarities, as shown in

Figs. I-3 for three phenomena: 1) a halo becomes more

prominent with light fog and disappears for heavy fog; 2) an

apparent contraction of the size of the halo light occurs as the

fog becomes more dense; and 3) the edge sharpness of the

light inside the halo appears to contract in size and to be well

defined. The halo may actually be expanding, but the change
in luminance, as the fog becomes more dense, may be below

the limit of perception and hence not readily visible.

Fidelity Limitations

The environmental chamber was initially designed for use

in investigating 1) the physical characteristics of fog; 2) a

method for generating fog and introducing it within the
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chamber;3)acontrollawtorapidlychangevisibilitieswithin
thechamber;4) ananticipatedblendingwithelectronic
methodstopartiallyveilthebackgroundinordertoimprove
thefidelity;and5)ameansforultimatelyproducingcom-
binationsof bothfogandrain.Consequently,theen-
vironmentalchamberwasoriginallyconstructedwithafixed-
positionfaceplate(Fig.4).The author believed also that this

configuration could be used to simulate a mature-radiation-

type fog with the use of a fixed faceplate position with the

support of some electronic veiling of the background. It can

be shown that the extinction coefficient for this type of fog

increases with altitude, and therefore the fog becomes much

more dense with altitude. _ Thus the visibility that the pilot

may encounter may very well be practically zero for some

altitudes. Furthermore, another reason for providing an

initial zero visibility in the simulator was to insure that no

scene elements could be observed by the pilot (as the aircraft

descended through the fog) until objects on the ground were
within the RVR.

FideliD Impro_,emenls v,ilh Electronic Techniques

It should be pointed out that the electronic method ',','as

shown--from examination of the fog equation [Eq.(3)] and

contrast equation [Eq.(6)], and comparison with the elec-

tronic equation [Eq.(7)] and contrast equation [Eq.(8)]--to

be incapable of producing a realistic fog. However, by

utilizing the vertical sweep signal as it relates to RVR, a

harmonious screening or veiling of the background scene used

in conjunction with the actual intervening fog can be used to

create a more realistic three-dimensional fog depth. Fur-

thermore, because an intervening fog is actually present, the

overall veiling luminance of the sky will be technically more

correct for all visibilities.

Performance of Environmental Fog Chamber

Pilot E_aluations

To obtain preliminary information on the effectiveness of

the low-visibility simulation, six airline pilots participated in a

fixed-base simulation study. All pilots were on current flight

status and qualified in similar type aircraft. A DC-8 jet
transport aircraft was simulated with dynamics that included

only the longitudinal dynamics and auto-pilot. This was

because 1) the resident display generator computer limited the

number of real-time calculations, and 2) the flights were made

without the usual instrument assistance, thereby forcing the

pilot to establish dependence on the vertical and longitudinal

out-the-window visual cues within the display scene.

The evaluation used two principle test conditions. These

(Table 1) were 1) a color television model-board dynamic

scene; and 2) a color computer-image-generated (CIG)

dynamic nighttime scene of the San Jose (Calif.) Municipal

Airport. A pilot opinion survey, pertaining to the fidelity of

Table I Test conditions

Ambient RVR visibility Display
light (maximum visibility), scene,

environment m fit) dynamic

Day 3,218 ( I0,558) TV

1,609 (5,279)

805 (2,641)
402 (I,319}

61 (200) a

Night 3,218 (10,558) CIG
1.609 (5,279)

805 (2,641)

402 (1,319)
61 (200) a

a Low ceiling,

the visual simulation, was used to help evaluate the display

and to help isolate deficiencies where necessary.

Results of Pilot Evaluations

The test conditions shown in Table I were presented to the

pilots who rated the display conditions for fidelity on a scale

of one (high fidelity) to four (low fidelity) at the end of each

flight session. Only one 2-h session was required for'the pilot

to complete the test sequence and to record his answers.

The pilot's cursory responses relative to the two display

conditions presented in Table I are summarized in Fig. 10.
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For convenience and comparison, the results of a similar

fidelity survey, which was conducted in the previously

described University of California/FAA fog facility, are also

presented in Fig. 10.

For the dynamic televised daylight scene, the mean level of

realism was 1.83 with a standard deviation of 0.37. This was

nearly equivalent to the FAA fog facility fidelity, with more

agreement among the pilots, as evidenced by the much smaller

standard deviation. Figure 10 includes also the nighttime

fidelity ratings obtained from the FAA fog facility; they show
a mean of 1.65 and a standard deviation of 0.53. No dif-

ferences were noted in the ratings obtained from the com-

puter-image-generated (CIG) nighttime display, which had a

mean fidelity of 1.5 and a standard deviation of 0.5. The CIG

standard deviations and a symmetric distribution showed that

the pilots were equally divided, half of them believing that this

nighttime low-visibility simulation was as real as they had

experienced. This increase in low-visibility realism, the author

believes, may be partially attributed to the intensity

modulation of the distant lights relative to the RVR and to

their appearance as they emerged through the intervening fog.

Contrast Measurement

Another measure of the effect of the display scene on the

low-visibility simulation is provided by the previously

developed contrast transmittance equations for both actual

fog [Eqs. (3-6)] and electronic fog [Eqs. (7-8)]. These

equations can be used to predict the transmitted contrast of a

scene through either the actual fog or electronic fog. A

comparison of the results could then be used to differentiate

between the two methods for simulating low visibility.

To measure the contrast transmittance, the TV runway

scene shown in Fig. 6 was used. The position designated as B o

was actually the left-most touchdown zone hash mark at the

runway threshold, and B o designated a position just outside

the runway apron. Thus the measurements were taken be-

tween B o and B o through the actual fog and at the same

positions for the electronic fog. These results and the

predicted values calculated from the contrast transmittance

equations for actual fog [(Eq. (6)] and electronic fog [(Eq.

(8) ] are presented in Fig. I 1. It can be seen that the measured

values are very close to the predicted values and that the fog

chamber appears to produce a valid contrast. The contrast for

the electronic fog is shown to be unrealistic.

Suggested Improvements

The underlying pilot comments pertaining to the low-

visibility display scene and those that appeared to divide the

fidelity ratings were derived from the absence of a fog

gradient, which becomes more prominent when close to the

ground. Figure 12 shows an improved environmental chamber

designed to accommodate a fog gradient through the use of a

movable faceplate, which changes positions according to

altitude and RVR. When in position B, there would be a

maximum fog in the chamber until the aircraft altitude Z

reached a predetermined RVR-derived vertical breakout

altitude ZvR. At that altitude, the faceplate would begin to

rotate to position A, according to the motor drive (Or,,)

equation shown in Fig. 12. As the aircraft descended, the

observed composite scene would not only have the appearance

of a realistic fog gradient, but would also have a background

obscured in the right proportions to the RVR. This

modification has been incorporated in a new chamber;

preliminary observations are very favorable.

Summary

Currently, there is an emphasis on conducting all pilot

training in flight simulators, principally because of 1) the high

costs of actual aircraft training flights and certification; and

2) the need for reducing airport congestion and improving air

safety. Associated with this emphasis is the demand for more

realism in the visual simulation display environment. The

low-visibility physics and the methods for synthesizing the

environmental or meteorological conditions have not been

well understood nor coordinated. As a result, the simulated

environment has been aesthetically created and _alibrated

without standards to create unnatural visibility conditions.

Furthermore, because the physical atmosphere or the at-

mosphere dynamics have not been present or included in the

aesthetically adjusted landing displays, the validity and level

of low-visibility realism using current methods is highly

questionable. Therefore this author conceived that a small

environmental chamber containing actual fog particles could

be constructed within the space between the display monitor

and the windshield-positioned collimating lens. It was felt that

this technique would allow further exploration and un-

derstanding of the physics of low-visibility atmospheric

conditions as well as providing a means for increasing the

validity of the visual scene contrast effects as perceived by the

pilot. Consequently, a device was constructed that 1) produces

actual fog; 2) includes an environmental chamber to entrap

the fog, resulting in RVR values from "clear" down to "zero-

zero"; 3) includes an RVR control system that has been

calibrated and found to be accurate within 2°;0 of the

theoretical atmospheric values; and 4) allows the pilot to

make unconstrained, closed-loop trajectory, final approach

or takeoff maneuvers under any day or night visibility con-

dition.

To further explore a new technique for synthesizing a more

realistic low-visibility environment and to make constructive

modification to the equipment by documenting both favor-

able and adverse potential user comments, a preliminary

study using six senior airline pilots was conducted. The results

of this cursory study showed that the above two display

conditions for both day and night were a significant im-

provement over current methods and that they were very
realistic. The adverse comments indicated that an im-

provement in representing a fog gradient would be desirable.

The pilots believed that the realism effect with the presence

of actual fog enhanced the displays; they considered the

computer-image-generated (CIG) nighttime display to be

nearly the equal of their real experience. The pilots' fidelity or

realism ratings for both the daytime and nighttime series of

low-visibility conditions, by comparison, were found to be

equivalent to the ratings taken from the FAA fog facility,

which also used actual fog. Contrast measurements of the

display scene observed through actual fog were in very high

agreement with the theoretical values. Therefore the subject

low-visibility environmental chamber attachment appears to

have the potential for reproducing a wide range of realistic

visibility conditions as well as for providing an increased

flexibility to conduct terminal-area piloted flight maneuvers

under other adverse environmental conditions. Further high

fidelity improvement can now be obtained by including a

variable-position faceplate and by combining the scene with

some of the electronic fog synthesizing methods (now in use)

to enhance the fog gradient and contrast perception needed to

provide a better three-dimensional effect. These results

support the hypothesis that in the simulation of low visibility,

the presence of actual fog enhances the perception of the

visual scene cues in a manner that portrays more realism.
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